
SO
LID

C
H

EATSH
EET

Brought to you by

Single Responsibility Principle

Class should have only one responsibility which means class should be highly cohesive and

implement strongly related logic. Class implementing feature 1 AND feature 2 AND feature 3 (and

so on) violates SRP.

BAD

class PlaceOrder

 def initialize(product)

 @product = product

 end

 def run
 # 1. Logic related to verification of

 # stock availability

 # 2. Logic related to payment process

 # 3. Logic related to shipment process

 end

end

•	 more than one contextually

separated piece of code

within single class

•	 large setup in tests (TDD is

very useful when it comes

to detecting SRP violation)

•	 separated classes respon-

sible for given use case

can be now reused in other

parts of an application

•	 separated classes respon-

sible for given use case can

be now tested separately

1.	 Meaning

2.	 Example 3.	 How to recognize
code smell?

4.	 Benefits

GOOD

class PlaceOrder

 def initialize(product)

 @product = product

 end

 def run

 StockAvailability.new(@product).run

 ProductPayment.new(@product).run

 ProductShipment.new(@product).run

 end

end

SO
LID

C
H

EATSH
EET

Brought to you by

Open/closed Principle

Class should be open for extension and closed for modification. You should be able to extend

class’ behavior without the need to modify its implementation (how? Don’t modify existing code

of class X but write a new piece of code that will be used by class X).

BAD

class Logger

 def initialize(logging_form)

 @logging_form = logging_form

 end

 def log(message)

 puts message if @logging_form == “console”

 File.write(“logs.txt”, message) if @logging_form == “file”

 end

end

•	 if you notice class X di-

rectly references other

class Y from within its

code base, it’s a sign that

class Y should be passed

to class X (either through

constructor/single method)

e.g. through dependency

injection

•	 complex if-else or switch

statements

•	 class’ X functionality can

be easily extended with

new functionality encap-

sulated in a separate class

without the need to change

class’ X implementation

(it’s not aware of introduced

changes)

•	 code is loosely coupled

•	 injected class Y can be

easily mocked in tests

1.	 Meaning

2.	 Example 3.	 How to recognize
code smell?

4.	 Benefits

GOOD

class EventTracker

 def initialize(logger: ConsoleLogger.new)

 @logger = logger

 end

 def log(message)

 @logger.log(message)

 end

end

class ConsoleLogger

 def log(message)

 puts message

 end

end

class FileLogger

 def log(message)

 File.write(“logs.txt”, message)

 end

end

SO
LID

C
H

EATSH
EET

Brought to you by

Liskov Substitution Principle

Extension of open/closed principle stating that new derived classes extending the base class

should not change the behavior of the base class (behavior of inherited methods). Provided that

if a class Y is a subclass of class X any instance referencing class X should be able to reference

class Y as well (derived types must be completely substitutable for their base types.).

BAD

class Rectangle

 def initialize(width, height)

 @width, @height = width, height

 end

 def set_width(width)

 @width = width

 end

 def set_height(height)

 @height = height

 end

end

class Square < Rectangle

 # LSP violation: inherited class

 # overrides behavior of parent’s methods

 def set_width(width)

 super(width)

 @height = height

 end

 def set_height(height)

 super(height)

 @width = width

 end

end

•	 if it looks like a duck,

quacks like a duck but

needs batteries for that

purpose - it’s probably a

violation of LSP

•	 modification of inherited

behavior in subclass

•	 exceptions raised in over-

ridden inherited methods

•	 avoiding unexpected and

incorrect results

•	 clear distinction between

shared inherited interface

and extended functionality

1.	 Meaning

2.	 Example 3.	 How to recognize
code smell?

4.	 Benefits

SO
LID

C
H

EATSH
EET

Brought to you by

Interface Segregation Principle

Client should not depend on interface/methods which it is not using.

BAD

class Car

 def open

 end

 def start_engine

 end

 def change_engine

 end

end

ISP violation: Driver instance does not make use

of #change_engine

class Drive

 def take_a_ride(car)

 car.open

 car.start_engine

 end

end

ISP violation: Mechanic instance does not make use

of #start_engine

class Mechanic

 def repair(car)

 car.open

 car.change_engine

 end

end

•	 one fat interface imple-

mented by many class-

es where none of these

classes implement 100% of

interface’s methods. Such

fat interface should be split

into smaller interfaces suit-

able for client needs.

•	 highly cohesive code

•	 avoiding coupling between

all classes using a single

fat interface (once a meth-

od in the single fat interface

gets updated, all classes

- no matter they use this

method or not - are forced

to update accordingly)

•	 clear separation of busi-

ness logic by grouping re-

sponsibilities into separate

interfaces

1.	 Meaning

2.	 Example 3.	 How to recognize
code smell?

4.	 Benefits

SO
LID

C
H

EATSH
EET

Brought to you by

Dependency Inversion Principle

High-level modules (e.g. business logic) should not depend on low-level modules (e.g. database
operations or I/O). Both should depend on abstractions. Abstractions should not depend on de-
tails. Details should depend on abstractions.

BAD

class EventTracker

 def initialize

 # An instance of low-level class ConsoleLogger

 # is directly created inside high-level

 # EventTracker class which increases class’

 # coupling

 @logger = ConsoleLogger.new

 end

 def log(message)

 @logger.log(message)

 end

end

•	 instantiation of low-level

modules in high-level ones

•	 calls to class methods of

low-level modules/classes

•	 increase reusability of

higher-level modules by

making them independent

of lower-level modules

•	 injected class can be easily

mocked in tests

1.	 Meaning

2.	 Example 3.	 How to recognize
code smell?

4.	 Benefits

GOOD

class EventTracker

 def initialize(logger: ConsoleLogger.new)

 # Use dependency injection as in closed/open

....# principle.

 @logger = logger

 end

 def log(message)

 @logger.log(message)

 end

end

