
1

E V E R Y T H I N G

Y O U N E E D

T O K N O W T O M A K E

A N E D U C A T E D

D E C I S I O N A B O U T

Y O U R T E C H N O L O G Y

S T A C K
B
R
O
U
G
H
T
T
O
Y
O
U
B
Y
M
O
N
T
E
R
A
IL

IN
C
O
L
L
A
B
O
R
A
T
IO
N
W
IT
H
E
V
A
N
Y
O
U

2 0 1 7

2

Preface

The Evolution of Vue.js
Damian Dulisz

How Developers Use Vue.js

Case Studies

Behance & Adobe Portfolio
Erin Depew, Matt O’Connell, and Yuriy Nemtsov

Chess.com
Scott O’Brien

Clemenger BBDO
Sylvain Simao

Codeship
Roman Kuba

GitLab
Jacob Schatz

Livestorm
Gilles Bertaux

The Future of Vue.js
Evan You

1

2

3

4

a

b

c

d

e

f

5

3

7

15

29

32

40

46

52

60

67

74

What’s Inside?

3

S TAT E O F V U E . J S 2 0 1 7 P R E F A C E

Preface

A few years back, Monterail was a well-established develop-

ment agency, renowned for its Ruby and Rails expertise.

Now, from today’s perspective, such a label feels a bit odd.

We started with traditional Ruby multi-page app development, but pret-

ty soon it became obvious to us that many of the practices and patterns

changed as technologies evolved. Backbone.js was our first foray into

JS frameworks in 2011, undertaken since we couldn’t just stay inert if we

wanted to meet the market needs. We have been actively monitoring

this dynamically changing world, and along the way we early-adopt-

ed Angular JS and became experts on it. With the advent of the latest

generation of component-based frameworks, our team has em-

braced all the major players in the field, including React (along with

React Native), Angular (2 and up), and—most extensively—Vue.js.

Familiar Does Not Mean Better

Before we started working with clients who requested an app writ-

ten with Vue directly, we were talking to businesses who have never

heard of it. Once they did, they were impressed with its openness

and power, and wanted to include Vue in their technology stack.

We feel that most companies which choose more well-known frame-

works make their decisions without having all the relevant informa-

4

S TAT E O F V U E . J S 2 0 1 7 P R E F A C E

tion and simply adopt something that sounds familiar. They’re usually

unaware that somewhere out there, there’s a technology which com-

bines the advantages of Angular and React and adds an additional

layer of niceness on top of it.

The Rationale Behind the State of Vue.js Report

With Vue in our tech stack we can efficiently deliver better products—

it helps us drive our business and make clients happy, and so we believe

it deserves all attention and love. With that in mind, we embarked

on the journey to evangelize to developers and businesses and spread

the word about Vue. That’s how we ended up curating the week-

ly Vue-newsletter, organizing VueConf, the first international

Vue.js conference in the world, and creating libraries like Vuelidate

and Vue-multiselect.

The report you’re reading is yet another milestone in that mission. It was

created for three primary reasons. One, to provide a reliable source

of Vue.js business use cases so anyone can get a sneak peek at how other

companies use Vue.js. Two, to reach more individuals who have never

heard of Vue and provide them with good reasons to give the frame-

work a closer look. Three, to never, ever again have to convince our

clients that Vue.js is a ready-to-use solution and has everything we need

to build all kinds of applications.

Contents of the Report

The State of Vue.js report offers a business owners’ and developers’

perspective on Vue. We surveyed over than 1,100 specialists from

88 countries to find out their experiences with Vue, and what they

5

S TAT E O F V U E . J S 2 0 1 7 P R E F A C E

like and dislike about it most. We dug even deeper, and interviewed

six companies on what problems they wanted to solve with Vue.js.

To give you an overview of its growth over the years, we described

the story of Vue.js, also including a sneak peek of what’s coming next

from Evan You, the creator of the framework himself.

Enjoy the read,

Damian Dulisz
Frontend Developer
at Monterail

Karolina Gawron
Content Marketing
Manager
at Monterail

Marta Klimowicz
Head of Marketing
at Monterail

We would not be able to pull this report off if it weren’t for many amaz-

ing people who supported us along the way. They all were a tremendous

help, sharing their knowledge and experiences, just because they wanted

to give back to the community they’re part of.

Big thank you to Evan You, who was excited about the report from

the very beginning and had our backs during the creation of this very

piece of content. He also agreed to share invaluable insights about

the future of Vue.js and supported our writing efforts.

Evan, as well as Chris Fritz, Vue.js core member, were insanely help-

ful with analyzing the State of Vue.js survey results. Kudos for that.

Because of our collaboration, we felt comfortable about the quality

of the final product.

6

S TAT E O F V U E . J S 2 0 1 7 P R E F A C E

The case study part of the report would never come into existence

if it weren’t for all those who agreed to spend their time sharing

their stories. The warmest thank yous to Jacob Schatz, Sylvain

Simao, Roman Kuba, Gilles Bertaux, Scott O’Brien, Erin Depew,

Matt O’Connell, and Yuriy Nemtsov.

Contributors

Matt O’Connell
Software Engineer
at Adobe Portfolio

Evan You
Creator of Vue.js

Roman Kuba
Lead Frontend
Developer
at Codeship

Erin Depew
Software Engineer
at Behance

Jacob Schatz
Frontend Lead
at GitLab

Gilles Bertaux
Co-founder & CEO
at Livestorm

Yuriy Nemtsov
Software Engineer &
Manager at Behance

Sylvain Simao
Technical Lead at
Clemenger BBDO
Melbourne

Scott O’Brien
Lead UX Engineer
at Chess.com

Chris Fritz
Vue.js team
core member

7

The Evolution
of Vue.js

Damian Dulisz
Frontend Developer
at Monterail

8

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

D id you know that when Vue was first released, it wasn’t even

called “Vue”? The first commit, is dated back to June 27, 2013

and Vue was still called “Seed” at the time. That’s over 4 years

ago today. The first name stuck for nearly six months before it was even-

tually changed to Vue in early December of 2013. The first public release

(0.8.0), however, was unveiled only in February of 2014. At the time,

Vue was a library that only focused on the View layer of the MVC archi-

tectural paradigm.

There were several important aspects of Vue that made it “click” with

developers. The template syntax followed a style similar to AngularJS

and a component-based architecture introduced by React, thus creat-

ing a smooth bridge between the two mindsets. I like to think about

Vue as the lovely child that got the best parts of its parents, AngularJS

and React, with a constant emphasis on developer experience and ap-

proachability.

The JavaScript community became increasingly interested in Vue,

but it was a year later, when the Laravel community (gathered around

this popular PHP framework) first discovered it that Vue really took

off. A couple of months later, the long-awaited 1.0 version was finally

released. This was a groundbreaking step for the library.

9

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

In the meantime, the community saw the release of vue-router

(August 18th, 2015), vuex (November 28th, 2015) and vue-cli (Decem-

ber 27th, 2015). These libraries marked the transformation of Vue from

a View-layer library into what we today call the Progressive Framework.

Last year, we’ve seen the release of the much-anticipated version

2.0—a complete rewrite of the framework which introduced sever-

al new concepts like the Virtual DOM and Server-Side Render-

ing capabilities. However, the API remained virtually unchanged,

so the migration was smooth. The official vue-migration-helper tool

helped the process, too.

The Community

Fast forward one year and the still-thriving community has made

Vue.js one of the top 3 most popular JavaScript frontend frameworks

to date. And it doesn’t look like it’s going to stop there.

People fell in love with Vue. But rather than trust in our emotional as-

sessment, take a look at the numbers—Vue was the most starred project

on GitHub in 2016. Talk about developer enthusiasm!

 The community interest is incredibly strong—when we launched

the Vue Newsletter, hundreds of people subscribed in a matter of minutes.

The never-ending stream of email notifications made us feel like Ins-

tagram stars. The first issue of the newsletter went to 759 subscribers.

Sixty-three weekly issues later, our audience has grown to nearly 6,000

subscribers. Each new issue is harder to prepare because of how much

new Vue-related content surfaces basically every week now. High-quality

tutorials, insightful articles, and all the libraries I could ever think of now

http://vue-newsletter.com/

10

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

tend to show up daily. It’s insane! And that’s not all—the Vue community

is bolstered with a thriving forum and a Discord channel, with thousands

of developers active on both of these outlets each day.

Additionally, we can see that a growing number of companies across

the globe are increasingly betting on Vue, following the rapidly growing

interest of their developers. Just look at all the job offers published

at vuejobs.com.

The Ecosystem

I think it’s worth mentioning that apart from the community proj-

ects, the Vue Core Team also maintains several official libraries,

such as vue-router, vuex (state management), vue-rx, and vuex-ob-

servable (for RxJS), as well as tools like vue-cli, vue-server-renderer,

vue-loader, vetur, and vue-migration-helper. Why is this important,

you ask? Because it allows you to progressively opt-in to use other core

libraries that transform Vue into a full-fledged framework like Angular

or Ember, with the guarantee that it will work seamlessly. However, you

can always switch parts of it for other, unofficial solutions, if that is what

your project requires. Another good thing about the official supporting

libraries is that they always represent the highest quality and offer long-

term support and compatibility with Vue itself.

As one would expect, a massive and highly involved community such

as Vue’s comes with a significant number of community projects. And

not just small, focused libraries, we’re talking large-scale projects

here. For example, Nuxt.js is a highly-opinionated framework built

on top of Vue that combines several smaller tools as well as patterns

that make it incredibly easy to develop applications with SSR support.

https://forum.vuejs.org/
https://chat.vuejs.org
http://vuejobs.com/
https://nuxtjs.org

11

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

There’s the Quasar Framework, which helps with the development

of hybrid mobile and desktop applications. There are also several very

popular UI frameworks like Element-UI and Vuetify that will give you

dozens of unified UI components to bootstrap your application. Vue

also gets more and more support from mobile development frame-

works like OnsenUI by Monaca and NativeScript.

From my perspective as a Web applications developer, I can assure you—

it already has everything your app will probably need. Each week I see

more and more libraries being published, to the point that it’s impossible

to keep track of all of them. Many of those libraries can be found here:

[A list of awesome things related to Vue.js]. Additionally, the core team

manages a list of recommended libraries at curated.vuejs.org for popu-

lar tasks like validations, i18n, AJAX requests, to help with the fatigue

of picking the right tool.

The Backing

Many people point out that Vue is not backed by any large company

in the same way Angular or React are, and they act like it’s a bad thing.

I dare to disagree. Vue truly embodies the spirit of open source, like

jQuery, Babel or webpack do, and those are the most reliable tools

in the JavaScript world. There is a significant advantage in that. The

project doesn’t have to follow the needs of a particular company and can

instead focus on what the community needs.

And Vue does deliver what the community needs the most. When

speaking about the support for code splitting, Sean Larkin, a core team

member of webpack, described Vue as:

http://quasar-framework.org/
http://element.eleme.io/#/en-US
https://vuetifyjs.com/
https://onsen.io/vue/
https://www.nativescript.org/blog/a-new-vue-for-nativescript
https://github.com/vuejs/awesome-vue
http://curated.vuejs.org

12

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

The first framework to craft a Developer Experience with webpack

in mind.

But the focus on developer experience goes far beyond webpack

and is present in every aspect of the library, starting from its ease of use,

through smooth integration, and up to top-notch documentation

and overall scalability.

Obviously, Vue.js—again, like almost every other open-source library—

began as a one-man project. Since then, it grew to the point where it has

a fully-staffed core team that takes care of different aspects of the library

and its ecosystem.

The funding? Over the last two years, individuals and companies

from all around the world decided to support Evan You (the creator)

and the Core Team with a stable monthly income of more than $10,000

through successful campaigns on both Patreon and Open Collective.

This allowed Evan to shift to working on Vue full time.

The sponsors include multiple companies and hundreds of other private

backers. The list of current sponsors can be found here.

The Growth

Here are some numbers that might give you a feeling of how fast

the Vue ecosystem is growing.

Let’s take GitHub stars for example. Although they might not be the per-

fect metric to demonstrate the popularity of a project just yet, they surely

https://vuejs.org/support-vuejs/

13

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

show the excitement around it. And the excitement was high enough

to make Vue the Most Starred Project on GitHub in 2016. Not just within

the JavaScript or frontend categories. It was the most starred project

that year, period, and right now it’s the second most-starred frontend

framework, sitting slightly behind React, and the sixth most-starred

GitHub project overall. It already surpassed jQuery and Angular.

Surveys like the State of JavaScript 2016 indicate that Vue has one

of the highest satisfaction ratings and 89% of developers who’ve used

Vue before would pick it again.

Naturally, there are a number of other metrics to check out, such

as monthly npm downloads (~800k) or weekly dev tools users (~270k).

The npm numbers might seem small compared to React, but it’s worth

mentioning that Vue downloads increased more than five times over

the last twelve months. Looking at the momentum Vue currently has,

I believe it’s safe to assume the numbers will grow at an even greater

pace in the coming years.

A big part of this growth comes from the fact that more and more com-

panies are picking Vue as their main frontend framework. Among other

things, these recent adopters have been praising Vue’s incredibly smooth

learning curve, ease of integration into their existing stack, top-notch

performance, and—what’s probably the most important factor—the im-

provements in development speed and reductions in maintenance costs.

In other words, choosing Vue saves money.

But don’t take my word for it just yet. To make our case, we surveyed

1,126 developers from 88 countries, and collected several case studies,

hailing from a range of different industries, that have adopted Vue.

https://risingstars2016.js.org/#all
https://stateofjs.com/2016/frontend/

14

S TAT E O F V U E . J S 2 0 1 7 T H E E V O L U T I O N O F V U E . J S

Read on.

15

How developers
use Vue.js

16

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

W e were curious about the experience with Vue.js among

software developers and Chief Technology Offi-

cers. In an online survey we asked them a number

of questions to determine:

• what were the reasons behind adding Vue to their tech stack,

• what advantages did working with this framework offer them,

• what were their main doubts with regard to using Vue in their project,

• what resources did they use to master Vue.js,

• how many of their colleagues use Vue and whether they expect this

number to grow in the next 12 months,

• for how long have they and their teams used Vue.js,

• what other backend and frontend technologies are used in those

companies.

Report Data

All report data comes from a survey conducted over a four-week pe-

riod in August and September of 2017. We received 1,126 responses,

mainly from software developers and Chief Technology Officers (94.1%

of the respondents held these or related technical roles) whose organi-

zations use Vue. The responses came in from every continent on Earth

(except Antarctica); in total, we’ve managed to collect replies from

88 countries.

We also asked Evan You, Vue creator and Chris Fritz, Vue Core Team

member to comment on some of the survey results, in order to provide

additional insights or to share their broader perspective.

17

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

Key Insights

of survey participants say that ease of integra-

tion is one of the chief advantages of having

Vue in their organizations’ tech stack.

81%

are convinced Vue.js is going to get more popu-

lar in their organization in the next 12 months.

54%

survey participants would use Vue.js again for

their next project.

96%

of the respondents used the Official Vue doc-

umentation as their main source of knowledge

about the framework.

94%

18

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

THE MOST IMPORTANT REASON BEHIND ADDING VUE TO THE TECH STACK

Vue.js is pretty easy to start with

Easy to integrate with existing apps
or go full SPA.

Could be used for existing and new
projects + pretty easy to use!

Tech stack needed to be
updated

Team was interested in trying
out the framework

Other

59%

10%

22%

9%

Software developer,
Medium enterprise, Australia

Chief of Technology Officer,
Large enterprise, France

Survey Questions

What was the most important reason behind adding
Vue.js to the technology stack?

Whether starting a new project or inheriting one—the developers are

more or less unanimous: Vue.js is pretty easy to start with, even for

a really complex applications. They appreciate its simplicity and architec-

tural elegance, elaborate on how easy it is to integrate Vue, but also com-

pare its lightness and performance to other popular frameworks, claiming

Vue is the unquestionable winner here. All in all, Vue.js is described

as a beginner-friendly framework by more than half of the respondents.

19

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

We do have Weex and NativeScript, but
we acknowledge they both have areas to
improve.

 Weex has been used in production at Alib-
aba for quite a long time, and is essentially
Alibaba’s bet in the mobile dev space. But
it lacks in terms of documentation and
learning resources for English speakers.
We intend to bridge that gap next year by
providing official guidance on how to get
started with it from the Vue side.

 NativeScript is also a solid technology, and
its integration with Vue, although relatively
young, is being improved at a rapid pace.
It’s getting more impressive every day. Defi-
nitely keep an eye on it if you are interested
in using Vue for native development.

Evan You
Vue.js creator

What were the doubts you and your team had when plan-
ning to add Vue.js to your tech stack?

The respondents mention two main doubts they had when plan-

ning to add Vue.js to their tech stack. First concern, expressed by 45%

of respondents, is more related to their teams themselves. Lack of former

Vue experience among their colleagues was seen as a possible issue when

planning to add the framework to their tech stack.

Vue’s mobile options are con-
stantly improving. In the mean-
time though, Vue offers very
strong support for Progressive
Web Apps, including a dedicated
template. Community projects
like Onsen UI even simplify the
process of building native-like,
hybrid UIs.

Chris Fritz
Vue.js core team member

DOUBTS WHEN ADDING VUE.JS TO TECH STACK
Percentages do not sum up to 100% due to the multiple choices.

Lack of former
Vue.js experience
among employees

Uncertainty regard-
ing its future

Lack of a popular
native mobile devel-
opment platform

Doubts about its
scalability

Other

45%

45%

45%

23%

15%

12%

https://github.com/vuejs-templates/pwa
https://github.com/vuejs-templates/pwa
https://onsen.io/vue/

20

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

Architectural-wise, Vue is built on the component-based model for UI de-
velopment which is a proven pattern shared among all major frameworks,
with solid official solutions for SPA routing and large-scale state manage-
ment. It is designed for approachability, but is also designed with scale in
mind.

 We also have many users successfully building large scale projects with
Vue, some even with hundreds of components and are still perfectly happy
with the workflow. In addition, some existing big apps are being rewritten
with Vue and we’ve received very positive feedback from devs working on
them, for example Adobe Portfolio and JSFiddle.

Evan You

Lack of a popular native development platform was mentioned by the same

percentage of respondents as their doubt when considering using Vue.js.

Doubts about Vue.js scalability were chosen by 172 survey participants,

making it one of the five most prevalent doubts plaguing developers plan-

ning to add the framework to their current tech stack.

What are the biggest advantages that Vue.js brings
to your organization?

An impressive 81% of developers emphasize ease of integration

when it comes to Vue. The majority remarked upon how easy it is

to master Vue and claimed that it’s much easier to learn than other

popular frameworks. They also appreciate its uncomplicated inte-

gration with backend frameworks.

Documentation is another strong point of Vue, brought up by 60%

of surveyed developers. A similar number of respondents (56%) identi-

fied the framework’s performance as its biggest advantage.

21

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

THE BIGGEST ADVANTAGE
Percentages do not sum up to 100% due to the multiple choices.

Ease of integration

Vue.js makes frontend development man-
ageable and scalable. The learning curve is
pretty easy so backend developers can eas-
ily get what’s going on without too much
guidance. Since there are a lot of pretty
good webpack configs already out there,
it kinda feels like plug and play nowadays.
Finally, the fact that we can use Vue.js
either via run time or compiling it, it’s a
pretty amazing tool to use from small to
large applications without too much diffi-
culty in scaling.

The smooth learning curve
make a lot of people interested
into Vue.js.

We were debating React vs Vue
and ultimately chose Vue and
we are glad we did.

Documentation

Performance

Progressiveness

Highly involved
community

Other

Software developer,
Small business, Philippiness

Senior developer,
Medium-size business, New Zealand

Software developer,
Medium enterprise, USA

81%

49%

60%

29%

56%

4%

22

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

Is there anything you’re missing when it comes to Vue.js?

We received 481 valid responses to this open-ended question. Since

some of the shortages were mentioned by more than 20 people,

we decided to employ broader categories for them.

Lack of a native Vue mobile solution is one of the biggest pain points, spon-

taneously mentioned by more than 24% of respondents. There is definitely

a strong demand for a more advanced mobile solution for Vue.js.

15% of those who replied to this question, identified a relatively small

ecosystem as another Vue drawback. Once the ecosystem gets better

and bigger it will be able to ensure a better collection of components.

Additionally,

tooling is going to be improved even more with the next iteration

of the CLI, assures Evan You.

In their replies, respondents also brought up lack of official tutorials,

a “Vue bible” as one of them called it, or a comprehensive Vue Cook-

book that would offer more real life examples, especially in complex

apps. As Christ Fritz comments,

The recently released official style guide now provides a sort of Vue

bible, but it was unavailable at the time of the survey.

There is also a need for better documentation for the framework, since

53 of respondents mentioned some issues related to it either directly (eg.

More architecture-related documentation regarding bigger apps) or indirectly,

mentioning some issues they wrongly assume are impossible to solve with

Vue. The two final issues, identified by more over 20 respondents, were

related to improvements in testing tools and the need to improve the core.

https://vuejs.org/v2/style-guide/

23

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

The cookbook, which will begin serious develop-
ment in November, will help provide examples for
larger apps, common integrations, and also explore
architecture questions.

What’s the probability of you using Vue again for a new
project?

More than 95% of respondents claim they would use Vue.js again for

a new project. A number that high clearly proves that their doubts went

away once they gained experience with the framework. Even though

they mention its shortages and express the need for improvements,

Vue is clearly appreciated by almost everyone who has ever used

it and the overwhelming majority of respondents have no doubts about

using it again for their next project.

Chris Fritz

SUGGESTIONS

Need of Vue-native, a more advanced mobile solution

Bigger, better ecosystem, assuring better collection of
components and tooling

Official tutorials and other learning resources, providing
more use cases with best practices and real life exam-
ples (esp. of complex apps)

Better documentation allowing smoother apps devel-
opment

Better testing tools and libraries

Improved core

116

74

67

53

37

21

24

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

THE PROBABILITY OF USING VUE FOR NEXT PROJECT

5 (very high)

4

3

2

1 (very low)

82.9%

3.5%

12.5%

1%

0.1%

How long Vue.js has been used within your organization?

With its growing community, dedicated events popping up all over

the world, and its position among the top 10 most starred reposito-

ries on GitHub, Vue is gaining more and more traction. More than

3/4 respondents added Vue.js to their tech stack in last 12 months.

It may mean we should expect the number of Vue developers to grow

rapidly over the next few years and the framework itself maturing, with

a better ecosystem and more use cases.

HOW LONG VUE.JS HAS BEEN USED WITHIN YOUR ORGANIZATION?

Less than 6 months

6–12 months

1–2 years

More than 2 years

45%

19%

34%

2%

https://github.com/search?p=1&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?p=1&q=stars%3A%3E1&s=stars&type=Repositories

25

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

What resources do you use to learn about Vue.js?

The official Vue documentation is the most popular resource used

to learn about Vue.js. It was chosen by 94% of software developers,

proving that a well thought out documentation is a major strength

of any framework. Additionally, online articles, blog posts, and commu-

nities such as StackOverflow or the official Vue Forum have been iden-

tified as a source of knowledge by over 70% of the surveyed software de-

velopers. Online courses have attracted 41% of them, while on-the-job

training and books have served less than 1/4 of the respondents.

Do you think the number of employees using Vue.js in your
organization will increase in the next 12 months?

54% respondents are convinced Vue.js is going to be more popular among

their organization in the next 12 months. However, those who work

LEARNING RESOURCES

Official
documentation

Online articles and
blog

Online communities (eg. Stack-
Overflow, Vue Forum)

Online courses

On-the-job training

Books

Other

94%

5%

78%

72%

41%

22%

12%

Percentages do not sum up to 100% due to the multiple choices.

26

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

at large enterprises (more than 1,000 employees) are even more certain Vue

is going to be widely adapted in their companies: 76% of them believe so.

INCREASE IN THE NUMBER OF EMPLOYEES USING VUE.JS

5 (definitely yes)

4

3

2

1 (definitely no)

33%

24%

21%

11%

11%

Other projects in the company are
going to use Vue (or already do).

We’re hiring like crazy and
have lots of projects coming up.
They’ll all use Vue.

Software developer,
Large enterprise, France

Head of Engineering,
Large enterprise, Germany

What are the main technologies and frameworks you use
for frontend development?

INCREASE IN THE NUMBER OF EMPLOYEES USING VUE.JS

Vue.js

Angular

ReactJS

Other

Backbone

33%

24%

21%

11%

6%

Percentages do not sum up to 100% due to the multiple choices.

27

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

What are the main technologies and frameworks you use
for backend development?

MAIN BACKEND TECHNOLOGIES AND FRAMEWORKS

COMPANY SIZE (NUMBER OF EMPLOYEES)

PHP

Small and Medi-
um-Sized (<100)

Node.js

Medium Enterprise
(100-999)

Java

Enterprise (1000+)

C#/.Net

Python (Django,
Flask, etc.)

Ruby (on Rails or
otherwise)

Other

53%

77%

18%

8%

45%

15%

17%

17%

10%

8%

Percentages do not sum up to 100% due to the multiple choices.

Demographics

We surveyed 1,126 software developers, CTOs, and other technical roles

familiar with Vue from 88 countries.

28

S TAT E O F V U E . J S 2 0 1 7 H O W D E V E L O P E R S U S E V U E . J S

TEAM SIZE (NUMBER OF TEAMMATES)

ROLE IN ORGANISATION

Small team (2–10)

Software developer

Solopreneur

Chief Technology
Officer

Medium team
(11–25)

Other technical role

Large team (25+)

Project Manager

Other

73%

66%

8%

8.5%

2%

4%

1.5%

17%

20%

29

Case Studies

30

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S

O ne of the reasons for drafting the State of Vue.js report

was to provide a substantial body of evidence that Vue

is a mature technology, adopted by companies of various

shapes and sizes. Each presented case study proves that Vue is ready

for commercial usage. All six companies we interviewed had faced

the challenge of choosing the right framework, and they all decided

to go with Vue—even though they are in different stages of growth

and have different goals.

Before Codeship started working with Vue, their audience expe-

rienced freezes and browser crashes. They had a long list of users

who were dissatisfied with the performance of the app. Their story

is a great example how Vue can help build a reliable software, with

a bulletproof, easy-to-maintain code.

If you’re looking for a good illustration of how enterprise-level orga-

nizations use Vue.js, the Behance and Adobe Portfolio case study may

come in handy. Their team built two independent products in Vue from

the ground up—and they’re not going to stop there.

In the Livestorm case study, Gilles Bertaux, co-founder and CEO, de-

scribes how they created a profitable product starting from scratch.

Thanks to Vue and its reusable components, their development has been

faster and much easier.

31

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S

Jacob Schatz, frontend lead at GitLab, explains why they decided to move

from jQuery to Vue.js and describes the main challenges they encoun-

tered along the way. Their focus on better UX resulted in a more desirable

product and therefore in increased sales.

Chess.com had to deal with hard-to-maintain legacy code in Angular 1.

With Vue.js, they found it much easier to collaborate within their fully

remote team of 15 developers. Chess.com is a platform with a massive in-

frastructure serving 19 million users around the world. In their case study,

you’ll find out how Vue.js solved many of their issues.

The last case study differs a lot from all the others. Sylvain Simao, techni-

cal lead at Clemenger BBDO Melbourne, explains how they use Vue.js for

projects with short lifespans—from 4 to 12 weeks. The biggest challenges

they encountered included tight deadlines, working a lot with animations

and transitions, and delivering highly-performative campaign websites.

Behance &
Adobe Portfolio

Behance is the leading online platform for

showcasing and discovering creative work.

Adobe Portfolio is a custom website builder

designed to enable users to showcase their

creative work.

Erin Depew
Software Engineer
at Behance

We were a little hesitant since
there aren’t all that many major
companies using Vue out there.
However, every time I’ve had
any issues, it’s usually because
I was overthinking it, and I was
pleasantly surprised when it re-
ally was that easy to implement.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Moving from homegrown solutions to community-supported technology

Maintaining high user experience and performance

Being able to share components between other teams and projects

Switching the Behance and Adobe frontend teams to Vue.js

Using Vue.js to migrate the existing codebase

Comfort of converting the site at an unhurried pace, without having

to do it from scratch

Ease of integration with existing codebases

High performance and cost effectiveness

Yuriy Nemtsov
Software Engineer
& Manager
at Behance

Matt O’Connell
Software Engineer
at Adobe Portfolio

33

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

Challenge

Adobe and Behance, a company under the Adobe umbrella, have been

leveraging the latest technologies and design thinking to create revolu-

tionary products that connect and empower the creative world for years.

The team had decided it was time to update to a community-support-

ed open-source framework since they were starting to hit the limits

of the homegrown technology that they were currently using.

Before Vue, we were using a homegrown MVC framework

that leaned heavily on Hogan.js (mustache) and jQuery. Our frame-

work wasn’t able to render declaratively, forcing us to imperatively

keep the DOM in sync with the data. It also didn’t have the ability

to compose features into components, enforce a unidirectional

data flow, nor a comprehensive documentation. So, even though

it worked well for years, we were ready to switch to a framework

that would allow us to build features rapidly with fewer bugs, facil-

itate their maintenance, and allow for quicker onboarding of new

people, Yuriy explains.

34

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

Mustache specifically was important to us, because we were using

(and still are, for the majority of behance.net) the same templates

on the backend and frontend. The speed with which we can deliver

the first meaningful byte to the browser is significant to us and our

users. That same speed would be tremendously difficult to achieve

if we were to wait for the browser to download the JS, parse, com-

pile, and execute it, and only then display that project to the user.

We were also looking specifically for a framework with server-side

rendering capabilities, he says.

For the Behance team, the primary goal was to build a codebase

that’s easier to work with and a strong foundation for new features to be

added going forward.

I think that one of the biggest challenges that we’ve faced

is that since we’ve decided not to “split” our codebase and start with

a clean slate, we had to spend a lot of time unraveling older code

to form new components. That trade-off between refactoring older

code to Vue while still maintaining the rest of the site and shipping

features has definitely been challenging, Erin elaborates.

We also take performance very seriously at Behance, so we have been

very careful to make sure that we can keep our performance metrics

while converting over the codebase.

For Matt and his team, user experience was also an important factor,

one leaving much room for improvement.

Regarding Adobe Portfolio, we started with nbd.js, which is a cus-

tom-rolled version of Backbone that was originally extracted from

35

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

a product we no longer have, called “Action Method Online.” From

there, we used that to build large chunks of the Behance network.

It had limitations for reactive systems, so we built the “reactive” part

of portfolio using Ractive, Matt adds.

The biggest challenge thus far has been, just like in the case

of Behance, maintaining a fast user experience with complex user

data state management, while providing instant feedback on both

the content and styling of a user’s site.

Solution

Rather than establishing new developer teams who would focus only

on Vue.js, both Adobe Portfolio and Behance retrained their existing

teams to use Vue.js in their day-to-day work.

The vast majority of the team was here before we switched to Vue.

Once we made the decision, we needed a few small projects to cut

our teeth on. For us, that meant very small, frontend only features,

and a set of features that weren’t publicly accessible, like our

36

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

style guide. This way, we could learn how to use Vue, how to write

the tests, and to style the components relatively safely. Only then

did we feel comfortable enough to take on a larger project. That was

Behance Live, Yuriy recalls.

On Portfolio, our entire frontend team works with Vue—nine en-

gineers in total. Some of our backend developers are also starting

to pick it up as well. There are about eight frontend developers

on the Behance product who program in Vue, Matt explains.

There is quite a bit of overlap between the two teams (Adobe Portfolio

and Behance). We share a lot of libraries and APIs between our code-

bases and feature roll-outs usually appear on and require collabora-

tion between both sites, Erin adds.

The Behance team encountered many challenges on their way

to determine how to structure the application in general, and how

to define the roles of different components.

The vuex store was also tricky to structure for a larger application.

We decided to use namespaced modules. It wasn’t clear at first

whether there should be a single store-module per route/page or data

type (e.g., user or project). Creating route-specific stores meant

that the actions across routes wouldn’t be reused. Making them

data-specific was the best solution for us, with a top-level route

store-module that combines the modules that the route needs. The

solution is, however, still far from perfect, Yuriy says thoughtfully.

To define roles of various components, we make a distinction between

a “page” component (the first component that the router points

37

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

to and the one that interacts with vuex) and a “dumb” component

(that solely sends properties down to child components and borad-

casts events up to their parents).

Using Vue.js for almost a year now, Matt and his team managed to build

or rebuild a bunch of features.

At Adobe Portfolio, we started with the Manage Content feature—

the area where users can reorder, add, delete, and perform various

other actions on their portfolio site. As needed, we created reusable

UI components like select dropdowns, overlays, toggles, and drag

and drop lists, Matt says.

Outcome

According to Erin, due to its progressiveness and great flexibility, Vue

is easy to integrate with Behance’s existing codebase.

38

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

I always say that every framework is just another tool. However, one

of the biggest benefits of using Vue, besides the speed and stellar

documentation, is how well it integrates into our existing codebase.

Unlike with other component-based frameworks, Vue has given

us the luxury of mounting our components onto our existing pag-

es, enabling us to slowly convert the site at our own pace instead

of going all-in.

I’d say Vue exceeded our expectations. We were a little hesitant since

there aren’t all that many major companies using Vue out there.

However, every time I’ve had any issues, it’s usually because I was

overthinking it, and I was pleasantly surprised when it really was

that easy to implement, she adds, laughing.

Currently, we’re planning on converting our entire Behance codebase

over to Vue, and, of course, recommending the adoption of Vue

to other Adobe teams.

In Yuriy’s opinion, Vue.js gives developers just as many possibili-

ties as other frameworks. In contrast to some frameworks, however,

it makes development easier and… less expensive.

I wouldn’t necessarily say that Vue allows you do things that you

couldn’t achieve using a different framework. However, it was re-

ally difficult to squeeze proper SSR performance from React. Prior

to the Fiber rewrite (React v16), a page with a large component

tree would block the main execution thread, which, in turn, meant

that if it took 100ms to render one page, all of the other clients

of that Node server would just wait. So, we needed to either in-

crease the number of processes-per-server or the number of servers

39

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S B E H A N C E & A D O B E P O R T F O L I O

to increase throughput. This was difficult to maintain and more

expensive than it needed to be. Vue’s SSR story is much stron-

ger. There’s caching and streaming built in. As a result, even

without spending a lot of time optimizing, the performance is good

on Behance Live, he says.

Working with Vue.js definitely is different than with other frame-

works. Somehow you just tend to enjoy your life more.

Chess.com

Chess.com is the #1 destination for online

chess. Every day more than a million games

are played by chess players from all around the

world and all skill levels. Chess.com is a fully

remote team with 100 team members.

Scott O’Brien
Lead UX Engineer
at Chess.com

It was the first time I’ve read
the entire documentation in one
sitting. It was 1:30am in the
morning. By the time I got to
the end of it, I knew that Vue.
js was something special. There
was something unique about it.
Something I’d never seen before.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Dealing with hard-to-maintain legacy code in Angular 1.

Introducing new features to increase user engagement.

Managing change in a fully distributed development team.

Benchmarking all available frameworks.

Moving from Angular 1 to Vue.js.

Architecting a growing library of components, each with its

modular CSS.

Ease of collaboration with a fully remote team.

More effective way to write CSS inside the app.

Scaling up efficiently in terms of speed, power, and abstraction

when compared to other frameworks.

41

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C H E S S . C O M

Challenge

Chess.com is the most frequently visited website about chess with

a great social network with over 19 million members. It has news, blogs,

community, lessons, puzzles, and of course real-time gaming. The com-

plexity of the portal may be overwhelming.

Its legacy code was in PHP and Angular 1. At any given moment,

Chess.com is hosting tens of thousands of games in real time on the Web

and mobile devices. For such a website, performance is everything.

We got to the point where the old way of doing things with Angular

1 was a huge performance bear. It was just getting bigger and bigger.

Some parts of our website became unusable on legacy hardware from

a performance perspective. It was unmaintainable, Scott recals.

The challenge that Chess.com was facing was not only dealing with ex-

isting features, but also planning for future ones.

42

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C H E S S . C O M

A lot of the discussion was about architecture because we knew

we had a bunch of new features we are trying to add to keep people

engaged to play more chess and try different ways of playing chess,

Scott explains.

I wouldn’t say it was out of reach with Angular, but it was very tough

to do it well in terms of performance with those legacy javascript

frameworks.

To improve the user experience, Chess.com required some real changes.

We knew we needed to take a leap. There was significant delibera-

tion over which framework we wanted to move to from Angular 1.

Of course, we considered the big players—Angular 2 and React.

The massive infrastructure and ongoing product development requires

a well-organized and quite big-sized team.

We have a collection of very different skillsets within our development

team. Moreover, the team is fully distributed and international—

we are all over the map. Any decision as big as leaping to another

technology brings a lot of concerns.

Solution

Choosing a framework backed by Facebook or Google, such

as React or Angular, respectively, seemed to be a safer choice.

Yet, the Vue.js community proved that the newcomer framework

is definitely a contender.

43

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C H E S S . C O M

We were so performance-centric that we would probably go with

a less developer-friendly framework if the benchmarks looked good.

Seeing Vue.js win the rendering and performance benchmarks was

mind-blowing, Scott explains.

We were concerned that the entirety of Vue.js was built

on Evan’s ideas and that the framework would live or die with him.

We decided that as long as the community was rapidly growing

and we believe they are doing something revolutionary, we wanted

to take the leap and believe that other people will see the value

in the future that we see now. So the big concern was if it’s going

to continue to grow and I think that has been proven by now.”

One of the first things that Chess.com team had to work on was rewrit-

ing different pages from AngularJS to Vue.

The process of rewriting is still going on today. It has been happen-

ing for months at this point. The other mission that we had was

essentially building our internal collection of reusable components,

Scott points out.

44

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C H E S S . C O M

I think it’s the most impressive thing we have been using Vue for—

architecting a growing library of components, each with its own

modular CSS, which will eventually comprise the entirety of user

interface elements on our site. While one team has been using Vue

to implement components, routes, and stores for particular product

domains, another team has been working on our component library

to be shared throughout the site with little to no concern for collision.

Additionally, it has infused our product discussions with a greater

sense of abstraction and reuse.

Outcome

For a big app like Chess.com, one thing about Vue brings more benefits

than the rest.

Single File Components was an absolute game changer for struc-

turing and maintaining our repository. Being able to just buy in to

the official pieces of the framework having an official state manage-

ment system. We’re having confidence that these things are going

to work together—it’s all part of the collective vision.”

With Vue.js in place, Scott finds it easier to collaborate with his remote

team.

What we love about Vue is that it has an incredible ease of use

and a low barrier to entry while simultaneously having the ability

to scale up with comparable (if not better) power, speed, and abstrac-

tion to other component libraries, he points out.

45

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C H E S S . C O M

We’re a fully remote team of 15 developers and we rely heav-

ily on Slack, Jira, and GitHub. However, it’s actually easier

to collaborate in Vue, because it’s not so different from our legacy

code—there’s still declarative templating and everything that we are

used to.

Secondly, the ease of writing CSS now is amazing. It made such

a tremendous benefit for us. We have many developers speaking

different languages with different coding styles. Coming up with

the names relevant only for markup in a particular file without wor-

rying about the global namespace. The ease of use is just wonderful.

As Vue has lent great support to the Chess.com team, they will definitely

continue working with it in the future.

We’re all in with Vue.js right now! As I said, right now our process

is twofold: essentially re-architecting our components and moving

from Angular 1. Therefore, we’re implementing it two totally sepa-

rate ways simultaneously. That’s elating.

Clemenger BBDO

Clemenger BBDO is a full service agency offer-

ing a full suite of capabilities including brand

strategy, integrated creative development, CX,

digital services, CRM, PR, design, shopper and

activation.

In the last 12 months the agency has been

named World’s most creative agency at

Cannes Lions and D&AD.

Sylvain Simao
Technical Lead at Clemenger
BBDO Melbourne

We decided to pick Vue.js be-
cause it was answering all the
requirements we had to cover
for our projects, while offering
a comfortable development
environment for our team. It’s
so close to native JavaScript,
that it’s extremely easy to start
working with it.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Projects with short lifespans (4 to 12 weeks) done by different people

Working with animations and transitions

Need to load and work fast on mobile devices

Using Vue.js with a pre-render solution for static pages

Building ES6 modules rather than framework specific code

Delivered several successful interactive campaign experiences

within strict deadlines

Digital projects ready for high traffic volumes

Quick onboarding and project setup

47

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C L E M E N G E R B B D O

Challenge

Most of the projects Clemenger BBDO works on are campaign websites.

It’s mostly frontend with a little backend magic—most projects use

the serverless approach, API, AWS services, and the like.

Working on different projects simultaneously under strict deadlines,

Clemenger BBDO had to devise a standardized solution that would sig-

nificantly increase development speed and be flexible enough to work

across very different experiences.

As technical lead, one of the main things I need to keep in mind

is the ability of my team to deliver high-end, quality projects within

short time frames. We are an advertising agency, which means

that a 3-month-long project is a really long one, Sylvain explains.

A fast-paced environment means that we need people to be able

to jump quickly into new tools. Sometimes we also need to work with

external contractors, so the perfect solution for us was something

easy to learn and start working with. Vue gives us a lot of flexibility

in terms of workflow—for example being able to work with already

known preprocessors for HTML and CSS is a big plus.

On client projects, Sylvain and his team worked with a variety

of different JavaScript frameworks.

I feel like we’ve tried all of them! Sylvain laughs.

We’ve tried frameworks like Angular, React, and Riot.js, but Vue

is the one we fell in love with. Vue offers simplicity and robust-

48

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C L E M E N G E R B B D O

ness at the same time. For us it’s a breath of fresh air among

the others. It has a rich ecosystem out of the box, and the fact

that it’s incrementally adoptable makes it the perfect tool for

the type of work we have to deliver on.

Interactive campaign websites are challenging in many ways.

You have to deal with SEO, accessibility, and extended browser

support—but also deliver on animations, transitions, and very inter-

active interfaces in general. Combining those is definitely the most

challenging aspect of our work.

Solution

Due to its smooth learning curve, Vue.js makes it easy to work with new

developers or external contractors.

We’ve noticed that Vue.js is great in terms of onboarding new peo-

ple. Why? The learning curve is really smooth and it’s really close

to vanilla JavaScript, Sylvain claims.

For us, as a business, it’s really awesome. People get up-to-speed real-

ly quickly and we can deliver more efficiently. One other remarkable

point is the incredible quality of the official documentation and re-

sources available for Vue. It probably deserves an award for the most

comprehensible framework documentation!

For every website Clemenger works on, it’s important to make it visible

for bots for successful SEO.

49

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C L E M E N G E R B B D O

For that specific problem we do pre-rendering for all our pages. Most

of the time, when we have a new project that requires Vue.js, we start

from a boilerplate that we’ve built on top of the official Vue webpack

template. Then, we use libraries like PhantomJS or Prep to render

static snapshots of the pages. The last step consists of serving those

pages to robots, which can easily be achieved by targeting the user

agent with Nginx or Lambda@Edge, Sylvain elaborates.

Sylvain uses Vue.js to deal with animations and transitions.

Right now we are changing our way of approaching animations.

Since the release of Vue’s most recent version, there is now a lot more

flexibility with the transitions. We now have a more granular access

to the transition hooks, that makes it possible to trigger third-party

libraries and deliver on complex animations, while still using Vue

at the core. I’m trying to push my team to move to that model.

For Airbnb’s campaign website—“Until we all belong”—Vue.js was

the technology of choice.

50

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C L E M E N G E R B B D O

The project is designed as a single page application, based on Vue

and webpack at the start. For better efficiency, the web views were

hosted in Amazon S3 buckets, which means that we couldn’t use any

server-side rendering. Every part of the UI and every page have been

built using Vue single file components. In this kind of website, where

we are anticipating major traffic, performance is key, and that’s why

everything is loaded on-demand. In one of our projects we were re-

cording 6,000 visitors per minute—it was a big buzz. We need to be

ready for that, Sylvain explains.

Vue.js can be a lifesaver in such cases. For the Airbnb project there were

big image assets in the background that we needed to load and animate.

For that purpose, we’ve used Vue-router to declaratively list assets

or data that required pre-loading, and VueX to keep track of those

on every page. The project was also challenging in term of interactions,

but we’ve managed to deliver the website within 6 weeks.

51

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C L E M E N G E R B B D O

Outcome

Delivering projects in a timely manner is much easier with Vue.js.

We wouldn’t be as fast if it wasn’t for Vue. Mostly because of the sim-

plicity of the API. We’ve recently worked on a prototype for a hybrid

app built on Angular 2, the syntax is elegant but the learning curve

is steep and doing simple things takes time. With Vue you can proto-

type really quickly and that’s probably its greatest strength.

With Vue.js, the Clemenger team is able to tackle a wide range

of different projects

We now have quite a few projects built upon Vue.js. Airbnb’s Until

we all belong, a campaign for marriage equality in Australia,

was recognized with a number of industry awards, including

AWWWARDS and CSSDA. Another project—Meet Graham—

which introduce the only person designed to survive on our roads,

Graham. Within the first week, the project recorded more than

10 millions page views and it got immersive recognition and media

coverage. It was highly acclaimed and received numerous awards,

including the Grand Prix at Cannes Lion 2017. One of our most re-

cent project is Snickers Hungerithm, where we’ve decided to rewrite

the campaign app using Vue.js for the global rollout. Hungerithm

is a hunger-algorithm that monitors online mood using tweets.

When anger goes up, Snickers prices goes down in real-time.

https://untilweallbelong.com/
https://untilweallbelong.com/
https://www.awwwards.com/sites/airbnb-until-we-all-belong
https://www.cssdesignawards.com/sites/airbnb-until-we-all-belong/30865/
http://www.meetgraham.com.au/
http://player.canneslions.com/index.html#/works?category=cyber&entry=809815&festival=CL
https://www.youtube.com/watch?v=GFVcR760kY8

Codeship

Codeship is a Continuous Integration Platform

in the cloud that lets you ship your apps with

confidence. Open source projects are always

free on Codeship.

Roman Kuba
Lead Frontend Developer
at Codeship

Vue gave us all the flexibility we
needed, to do what we wanted
to do. It offers a solid founda-
tion that can be expanded any
way we like and it’s not opinion-
ated about tools we use in the
pursuit of our objectives. That’s
what I really like about it.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Freezes and crashes inside the application.

Difficulty running unit tests with Angular.

Ambitious plans for new features and building new, complex things.

Building a proof of concept and convincing other developers to give

Vue.js a try.

Moving away from acceptance tests only.

Refactoring and rewriting pages.

Not a single crash of the app since Vue.js was implemented.

Bulletproof, reliable, and easy-to-maintain code.

Positive feedback from customers satisfied with the current UX.

53

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

Challenge

Codeship, a CI platform used by companies such as CNN, Red Bull,

and Product Hunt, launched in 2010. With jQuery and CoffeeScript

in their stack, they built a successful platform for developers around

the globe.

But as time went on, the team realized that it’s time to find a technology

that would support further development and facilitate building more

complex things.

To give you some perspective—Codeship is used by a ton of customers

who rely on it in their day to day operations. When we’re working

on a feature for, let’s say, four months, it somehow feels bad, like

we’re holding something back from our customers. If we spend

two months fixing features, this in turn means two months of pain

and uncertainty for them. It is absolutely crucial for us to be fast

and deliver reliable products, Roman says.

54

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

We have pages that basically show the complete terminal output

as readable log for our users, so they can see what test went

through and what output they have. It was clear very soon

that something like jQuery, on which our product was running be-

fore, wouldn’t cut it anymore because of the growing complexity,

Roman reflects.

We started working with Angular 1, which we used for the next six

months. Why? Well, mostly because I was already familiar with it.

The company switched to Angular and it was a good fit. Yet, as the ser-

vice grew, it soon became apparent that sticking with it would not

be feasible in the long term.

One of the things that we tried to improve was the performance.

That was the biggest problem with Angular. The sheer amount

of data we needed to present on the build page was way over An-

gular’s capabilities. Customers were reporting serious issues with

the app—the page was unresponsive, and some people were even expe-

riencing freezes and browser crashes.

Roman, however, didn’t want to give up on Angular right away.

Of course, we tried to optimize as much as possible. I even tried

to move parts of the rendering out of Angular’s default list rendering

and use plain JavaScript instead, but it didn’t work, Roman sighs.

55

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

At some point, Angular was trying to grasp what was going on the page

as Angular tried to keep track of its scope and ran the relevant digest

cycles... That killed performance, regardless of whatever we tried

to assuage the hit. There was no way it could have run smoothly.

Another significant challenge that Codeship faced was improving

the testing process and making the app more reliable.

With Angular, we still leveraged acceptance tests as much as possible.

We basically ran user stories in the entire application. It was incred-

ibly painful to run unit tests with Angular itself and test component,

module or controller only. It was barely giving us the full picture

we so badly needed, Roman explains.

Solution

The first step of transitioning away from Angular was getting the ap-

proval of the staff and the VPE.

At first, it was a struggle to get everyone on board with with Vue.

The team had never heard of it, whereas they knew of Angular

2 and knew that Google was throwing its weight behind it, and they

knew about React, backed by Facebook, Roman says.

In conversation with the team, usually the first question was about

the size of Vue.js community—people wanted to know whether there

was any chance of getting support should the need to do so arise.

Because the majority of our staff has roots in backend, they wanted

to stick with trusted names they heard of.

56

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

Roman decided to use his knowledge and research to convince them

to move to Vue.js.

I made some samples and an internal presentation to at least make

them trust the decision and the reasons behind it,” he says. “If you

read briefly through the source code of Vue, you’d quickly see

that the code is not so hard to extend by yourself. It’s not a giant enti-

ty like Angular or similar.

Before Codeship jumped straight to development, they needed a proof

of concept.

By then I had little experience with Vue, my expertise

in the framework was definitely limited. However, starting with

Vue seemed effortless and I quickly felt that it would be the solu-

tion to most of the problems that plagued us. In one evening

or so, I rebuilt a crucial part of our rendering with Vue, and tried

it against a large amount of Loglines as a proof of concept. Then

57

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

I did all the CPU profiling. That was the one thing that imme-

diately demonstrated to my team that Vue.js has already given

us a huge performance improvement. We cut the rendering time

from 30 seconds to 7 or so, Roman recalls.

Proof of concept in hand, Roman and his staff could finally start

the transition to Vue.

We tried to move the proof of concept and replace what we had

with Vue. The actual risk here was quite minimal. We had a system

that was breaking for users, so… What was the worst thing

that could happen? Roman laughs.

I spent a week refactoring and rewriting the page and then shipped

it to users for feedback, trying to get validation fast. After just one

day we knew that all that problems that plagued us in the past

58

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

were gone. Even with 15Mb of log rendered. With rendering times

between 30 and 40 seconds (we’re currently working to decrease

that number further), the app works splendidly across all browsers

and we haven’t recorded a single crash.

Moving from acceptance tests made the testing part more pleasant

and reliable.

We moved away from acceptance tests and started wondering what

we can take away from and use Jest and Vue tests for. We use mul-

tiple components even for complex pages in Vue itself, but only test

it through Jest for example, because we have snapshots and verify

whether the render HTML is actually the one we want, Roman explains.

Outcome

Engineers who rarely do frontend work now feel empowered to touch

pieces of code.

Angular, with all its structure, modules, models, and controllers,

and dozens of other things… introduces an unnecessarily high level

of complexity. For these engineers, most of it sounds like weird magic

spells. But when they actually saw Vue.js, they felt empowered to dig

into it right away. That’s a pretty big win for our company, Roman

reflects.

Vue.js helps Codeship organize their code and improve user experience.

59

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S C O D E S H I P

It helps us deliver features faster and our users love that they

don’t have to wait for months for something they need or expect.

One of our pages that was running on jQuery had this weird kind

of structure. We moved it to Vue and rebuilt it. Now, it provides

a more granular experience and interaction with the UI, and so it

significantly improved the UX. People tell us about it all the time.

With jQuery, the code would be very messy, hard to maintain. With

Vue, it’s different, you’re able to harness the power of its components

and start leveraging its ecosystem, like Vuex for example. What

we do right now is page state management—something we have nev-

er done before, not in such a clean way.

For Codeship, Angular testing was an incredibly painful process. With

Vue.js, they know that their code is bulletproof.

Vue.js seriously upgraded our testing protocols. We have Jest in place,

which is a smart test runner for us. With Vue, we feel like we have way

more control over every aspect of the app, Roman elaborates.

I can run 15 tests that try to perform specific actions. Such

an approach allows me to easily identify code breaks. This is not

something I could do this way in an acceptance test due to the sheer

amount of time it would take to run. And the result is simply not

worth the effort. Unit tests are great in that respect. Code-wise

I know that it’s bulletproof, as we test it in a completely new way

and it’s incredible.

GitLab

GitLab is an open core, integrated solution for

the entire software development lifecycle.

Jacob Schatz
Frontend Lead at GitLab

Every framework will struggle
in certain areas. With Vue.js,
every struggle will be your own,
not Vue’s. It’s just a perfect
framework.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Difficulty with implementing complex features and maintain cur-

rent ones.

Large Rails + jQuery application that was hard to scale.

Insufficient app speed.

Gradually introducing Vue.js to GitLab to be used along with jQuery.

Using Vue.js for all applicable new features and migrating old ones.

as needed, without doing a complete rewrite or refactor

Using webpack to create optimized bundles.

Easier maintenance of a unified style guide within the whole code-

base and code architecture.

Highly improved time and cost efficiency.

Improved user experience leading to better sales thanks to the abili-

ty to implement more sophisticated features.

Improved page load times by reducing asset size.

61

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

Challenge

After six years on the market, GitLab has established itself as a well-

known solution for developers hailing from thousands of companies.

Only two years back, most of its code was still written in Rails and jQuery.

By 2015, the company had no frontend developers on staff and that set-

up worked really well. Rails devs were writing frontend code and doing

a fantastic job. Yet, the company’s plans for the future required a new

solution.

When I came in I saw that we have these individual jQuery things

which were very simple, but for more complex things that we wanted

to do, the really big ideas that we wanted to achieve, we would need

something else, Jacob explains,

62

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

jQuery is fantastic, but it creates potentially more bugs

as you’re responsible for literally every state change.

To meet their goals, GitLab started looking for a new solution.

We checked Backbone, which I had previous experience

with, we obviously looked at React, but also Knockout, Ember,

and all those different frameworks. I wanted to do a small project

using each. By then I didn’t even bring up Vue.js at all! Jacob recalls.

Testing all these frameworks helped Jacob identify their advantages

and drawbacks.

Backbone has a lot of tools to get stuff done and a good structure,

but you’re still in the same boat as with jQuery. With React it scared

me a bit to get involved with a framework that depended on a big

company. Also, it didn’t seem to scale well for me. I really liked Mi-

thril! The only problem is that it’s not pretty to write at all. If they

could put a couple of extra layers of niceness on it, I’m sure people

would start adopting it.

Another big challenge was to make a mature switch to a new technology.

It was a bit risky, and thus had to be well executed.

In GitLab, we have tons of code. When I joined, there were already

eight thousand lines of JavaScript in our codebase. I obviously

didn’t want to do something that would be a complete rewrite.

We actually still have some chunks of jQuery here and there.

63

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

Solution

After testing a few frameworks, Jacob still didn’t have a perfect match

on his hands. It was only after he wrote a pretty big project with an early

version of Vue.js he realized that he may have struck gold.

When I had this one project together, I knew it was something

we could write a lot of code with. It wasn’t just about writing

a simple to-do app. When you get to work on this large application—

that’s where all problems actually start, Jacob explains.

Before GitLab started diving into Vue.js, they needed a proof of concept.

Phil Hughes [Sr. Frontend Engineer at GitLab], created a proof

of concept where we took a major feature that we were doing—issue

boards. Phil wrote that using Vue.js and it was immediately apparent

64

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

that we got a tremendous amount done in a small amount of time!

Without all those bugs which typically came with jQuery, Jacob says.

Vue.js supports the approach evangelized by Jacob within his team—it-

erate small and create proofs of concept.

We constantly have 4 or 5 proof of concepts going on, he says.

Using the same approach, GitLab introduced webpack to be able to split

the assets into smaller chunks downloaded by the browser and thus

improving the app load time.

We created a small proof of concept to see if webpack was even feasi-

ble. When we found out that it was, we went the whole way and end-

ed up writing and entire Trello application in Vue. And replacing

the billion-dollar industry in one month. Good job, Phil! Jacob laughs.

One feature of Vue.js turned out to be the most useful out of all—reac-

tive templates.

It’s a very, very simple thing that Vue does. One of the first things

I programmed in GitLab was to take the issue page, and when

you clicked close, you had to refresh the page. And now when you

click close, it just changes the status of the merge button, changes

the status of the button below. It does all those things automatically.

In jQuery, there was a ton of code. At least 30-40 lines to make sure

that the buttons were in the right state. With Vue.js it was literally

one line of code. The view always reflects the current situation, Jacob

explains.

65

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

And now that we use Vuex, it can be done better than before. The

state management stuff made a HUGE difference.

With all its advantages, Vue turned out to have one drawback.

Currently, there are 15 developers at GitLab. With frameworks

like Angular you kind of work in the same way together. Vue

is much more open, and so we had to create documents explaining

how we write in Vue.js. What patterns you’re going to follow. Still,

it’s something that we’ve solved. The openness of Vue is also its beau-

ty, but you need to make sure everyone’s on the same page.

Outcome

Scaling up the application and introducing new features would

be possible with jQuery, but it would be much harder to maintain.

What we do right now would require a tremendous amount of code

and a lot more organization. Vue has a lot of these problems solved,

Jacob says.

With something as reactive as Vue.js, you give it a variable,

and it’s going to bind it into the DOM directly and take care

of everything else. Especially in Vue 2.0 with its virtual DOM.

We wanted to increase our performance, and it was one way

to simplify our workflow.

 VUE.JS STYLE GUIDE BY GITLAB

https://docs.gitlab.com/ee/development/fe_guide/style_guide_js.html

66

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S G I T L A B

Thanks to Vue.js, GitLab can iterate quickly and improve their usability.

We can finally focus on usability and UX, where before we were fo-

cusing on little tiny things and code. Now we think about the much

bigger picture.

Vue.js is so open and accessible that it’s pure pleasure for GitLab fron-

tend developers to deal with it on a daily basis.

Vue, in contrast to other tools, does not follow any strict guidelines.

It’s open and that’s fantastic. I like everything what it does right now.

Of course, it’s got the most amazing documentation you can imagine.

It’s really straightforward to get started with it and onboard new

people.

Vue.js helped GitLab improve time and cost efficiency.

We know for a fact that our development is faster. That’s an easy

thing to see. From the sales perspective, those nicer UX features

we’re creating bring people to GitLab and make it a much more desir-

able product. People love the new things we put in there with Vue.js.

We increase the user experience, and so we increase sales.

Jacob agrees that they will definitely use Vue.js in the future.

We’re all set! We have other challenges now. Currently, we’re trying

to improve our process and speed up our testing. Vue.js solved so many

problems for us that we’re definitely keeping it for the future.

Livestorm

Livestorm is a all-in-one web-based webinar

solution. It helps companies like Workable,

Pipedrive or Instapage do live sales demo or

customer training.

Gilles Bertaux
Co-founder
& CEO at Livestorm

We didn’t have to spend a
month setting everything up like
with React, Vue had us oper-
ational in a week. We would
never be at the point we are now
if it weren’t for Vue. I’m 100%
sure of that.

C H A L L E N G E

S O L U T I O N

O U T C O M E

Building reliable real-time webinar software from scratch and hav-

ing it make an impact in a highly competitive market

Only a handful of Vue.js experts in Paris.

Attracting initial customers and validating the product idea.

Building a quick MVP.

Using Vue.js and Ruby to create a high-performance app.

Appearing at Vue.js community meetups to seek out potential hires

for the team.

Instant positive feedback from customers.

Reusable components and fast development.

Rapidly growing business with 20-30% revenue growth

month to month.

68

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

Challenge

Unlike other webinar platforms, Livestorm renders everything

in the browser. The service provides actionable insights through analytics,

integration with popular CRMs, and marketing automation software.

For an app like this, Gilles and his team had to pick a high-performance

tech stack. Starting from scratch, they were intent on validating their

idea and building a stable and reliable product.

The backbone of Livestorm is a Rails app—everything in backend

is made with Ruby. For all our frontend components we chose Vue.js,

Gilles explains.

We started working on our project in January of 2016 and from day one

we knew we would be using Vue. We needed something that’s entirely

open-source, highly performant, with a particular logic of components.

Vue was the only framework that met all our requirements.

69

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

A startup created by four co-founders, Livestorm sought to assemble

a robust staff from the company’s very beginning.

We thought a lot about hiring. There were only a handful of Vue.

js developers in the Paris area where we work. We also consid-

ered recruiting developers proficient in other frameworks similar

in structure to Vue, but in that case the onboarding process itself

could have taken much longer and that was problematic for us.

To build a successful live streaming product, the team had to focus

on reliability.

Reliability is a top priority for us. If you lose the live stream, webi-

nars and demos crash and lose stream, our business basically makes

no sense, Gilles says.

If the app’s down or there’s a bug making it impossible to use, we lose

customers. We needed a technology that would somehow both

guarantee top code quality and run really fast. We’re still working

on implementing end-to-end unit testing. Something we haven’t done

yet with Vue, it’s completely new to us.

Solution

Most of developers still choose React and other popular frameworks,

but Gilles believes there’s a shift coming.

To hire experts for our staff, we attended Vue.js meetups in Paris,

where we met highly experienced people. We also tried recruiting via

job sites. Interestingly, most of the developers we spoke with said

70

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

that they use Vue.js for their own side projects but their jobs have

them working on a daily basis with Angular, React, and other frame-

works. Often in big, well-established companies, Gilles points out.

One thing I’ve noticed, however, that companies often use these

technologies because they’re forced to by legacy code or because they

want to get a taste of this new hot tech everyone else is trying out.

In the startup community, on multiple Slack channels and meet-

ups I’m part of, CTOs and co-founders I spoke with who were

interested in moving towards Vue.js were very excited with the fact

that we’ve chosen Vue at Livestorm and have been asking a lot

of questions about it. Frankly, I believe there’s a significant shift

coming—people will be more interested in moving towards something

reliable and high performance, like Vue.js, while hyped technologies

like React will gradually wane in popularity until they’re finally

phased out, Gilles adds thoughtfully.

As Gilles wanted to put his product out there as quickly as possible,

71

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

the team created a quick MVP to get some initial feedback from

the outside world.

We spent less than a month building the first MVP. It was enough

to present the product and the basic concept. In the end, we got a lot

of positive feedback, which confirmed that we have a market fit,

he recalls.

It took us 5 months to sell the first subscription. That’s quite long,

but we needed to first work through some stuff that was not neces-

sarily technology-related.

The list of features that Gilles’ team built into their platform to make

it a competitive solution is really awe-inspiring.

WebRTC real-time streaming, full HD streaming during live ses-

sions, webcam and screen sharing are the primary video-related

features. We also offer an analytics-focused section that runs on Vue.

js and integration with popular sales and marketing tools like

Salesforce. We also developed a one-of-a-kind feature that no other

browser-based webinar software has, which allows users to switch,

on-the-fly, from WebRTC to HLS to make the stream compatible with

Internet Explorer users and a range of mobile devices.

Outcome

After a year on the market, Livestorm has customers from all over

the globe and a profitable product.

We have around 150 paying customers. They are all impressed with

72

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

how fast Livestorm is, they also love the UI and UX. Business-wise,

we have an app that runs on its own, without our interference, so to

speak—we don’t have a sales team. We have a staff of seven, includ-

ing product experts, engineers, and one marketing person. That

would be me. But just because the product is that good and reliable,

we grow by 20-30% each month, Gilles explains.

With Vue.js, Livestorm can release new features faster to the delight

of their customers.

We try to ship new things as fast as possible, of course. Right now,

we’re two months into a phase that will conclude with the release

of a big feature we’re working on, but we usually ship features

in a week or two, Gilles elaborates.

With Vue.js we don’t have to reinvent the wheel every single time.

We can reuse all the components we already have to speed up the de-

velopment. Currently, 39.5% of our our codebase is built with Vue.

73

S TAT E O F V U E . J S 2 0 1 7 C A S E S T U D I E S L I V E S T O R M

Gilles claims that choosing Vue.js over other frameworks made his com-

pany succeed faster.

Only benchmarks tell the truth and right now the benchmarks

clearly demonstrate that Vue.js is definitely the choice for new

and existing products. So if anyone has to make a technology

choice in the near future, they should rely on concrete facts, figures,

and benchmarks rather than opinions, he says.

If you have a lot of developers on staff who are used to Angular

or the more classic frameworks, having them shift to React may

be painful for the entire team. Transitioning to Vue, on the other

hand, is much smoother, which in turn translates to lower costs.

We didn’t have to spend a month setting everything up like with Re-

act, Vue had us operational in a week. We would never be at the point

we are now if it weren’t for Vue. I’m 100% sure of that.

74

The Future of Vue.js

Evan You
Creator of Vue.js

75

S TAT E O F V U E . J S 2 0 1 7 T H E F U T U R E O F V U E . J S

Sustainability

A s a project, Vue.js has come a long way to become what

it is today. It has grown from a small experiment into

a mature framework that is used by hundreds of thousands

of developers all over the world. It has also grown from “yet an-

other side project” into an ecosystem with over 300 contributors

across the vuejs organization, and maintained by a core team of over

20 active members across the globe. Core team members have taken

up responsibilities such as core library maintenance, documentation,

community engagement, and major new features such as type declara-

tion improvements and test utilities. Saying that Vue is a “one-man proj-

ect” is no longer accurate and would be disrespectful to all the amazing

contributions from the team and the community.

Financially, the Patreon campaign has been receiving stable recurring

pledges since February 2016, which has allowed me to commit to full-

time work on the project for over one and a half years now. In addition,

the recently started OpenCollective campaign, which aims at providing

financial support to community initiatives, has received over $11,000

in annual budget in only two weeks and continues to grow. More im-

76

S TAT E O F V U E . J S 2 0 1 7 T H E F U T U R E O F V U E . J S

portantly, these open financial contribution channels mean that your

company can actively help ensure the sustainability of the project

by becoming a sponsor.

Today I am confident to say that as an open source project, Vue.js has

surpassed the critical mass and the project’s survival is no longer

a concern for anyone considering adopting the project.

Stability

The frontend landscape moves fast and we understand how frustrating

constant breaking changes can be. That is why we take stability very

seriously. Looking at the project’s history on GitHub, you will see a rock

solid track record of consistent releases of new features and improve-

ments, prompt bug fixes, and a meticulous standard for code quality

(yes, we maintain 100% test coverage).

All Vue.js package releases adhere to semantic versioning and we try

our best to communicate any potential required actions ahead of time.

1.0 was released in October of 2015 and didn’t go through a single

breaking change in the public API until 2.0 was released almost a year

later. Before the release of 2.0, we conducted open design discussions

and released multiple alpha/beta/RC releases to ensure the stabili-

ty of the final release. We worked hard to retain API similarity with

1.0 and provided comprehensive guidance and tooling for the upgrade.

Today, 2.0 has been out for over a year, used widely in production

all over the world, and we don’t see a need for major breaking API

changes in the foreseeable future. It is our commitment to evolve

the framework with minimal churn for the users.

77

S TAT E O F V U E . J S 2 0 1 7 T H E F U T U R E O F V U E . J S

Continuous Evolution

Of course, we are not going to sit on what we have done up until today.

We have many ideas in the roadmap that we plan to explore and imple-

ment in the coming years, and I will divide them into three categories:

Near-term improvements

These are new features/improvements that will be continuously de-

livered in 2.x minor releases. They can come from feature requests,

inspirations from the broader web dev community, and use cases

we have encountered ourselves in actual development.

Mid-term improvements

There are new JavaScript language features (e.g. ES2015 Proxy,

Promises) that may simplify or improve the current API,

but are currently not suitable for the main branch due to having

to support IE9. We plan to start taking advantage of these features

in a parallel branch which requires latest evergreen browsers.

Long-term improvements

We are also keeping an eye on emerging standards such

as ES class syntax improvements (class fields and decora-

tors), Web Components (custom elements & HTML modules)

and Web Assembly. We have already started experimenting

with some of them, and will definitely leverage them to further

improve Vue’s development experience and performance as they

mature in terms of browser adoption.

78

S TAT E O F V U E . J S 2 0 1 7 T H E F U T U R E O F V U E . J S

Long-Term Vision

Many people have asked me why I started working on Vue.js.

To be honest, the original goal was to “scratch my own itch,” to create

a frontend library that I would enjoy using myself. As Vue got adopted

by more and more users along this journey, I received many messages

from users telling me that Vue has made their work much more en-

joyable, so it seems my preference happens to align with that of many

fellow Web developers. Today, I envision Vue’s goal to be helping more

developers enjoy building apps on the Web. I believe that happier

developers are more productive, and ultimately create more value for

everyone. The goal entails delivering a framework that is approachable,

intuitive, and at the same time solid, powerful, and scalable. I believe

we are on the right track, but there is also a lot more we can do, espe-

cially with the Web platform evolving faster than ever before.

We are excited for what’s yet to come.

79

S TAT E O F V U E . J S 2 0 1 7 T H E F U T U R E O F V U E . J S

© Monterail, October 2017

Monterail is a close-knit team of 80+ experts

offering Web & mobile development

for startups and businesses.

And we kinda love Vue.

www.monterail.com

hello@monterail.com

http://www.monterail.com?utm_campaign=Vue.js&utm_medium=link&utm_source=report
mailto:hello%40monterail.com%20?subject=

